A Lightweight Infrastructure for Global Heterogeneous Trust Management

Lightweight Infrastructure for Global Heterogeneous Trust management in support of an open Ecosystem of Stakeholders and Trust schemes
Reference Architecture of LIGHTest
Trust Scheme Publication Authority (TSPA)

- Open Source Client Library and Server Tools (available on IAK Git) that aim to design
 - A conceptual framework to represent arbitrary trust schemes.
 - Trust schemes to be published/queried over DNS
 - The discovery of Trust Scheme Publication Authorities.
- Legal Toolbox, publicly available soon (M36 of the project),
 - Cross-Border Legal Compliance and Validity of this trust scheme publishing
Conceptual Framework for Trust Scheme of TSPA

- **DNS Name Server**
 - discovery of associated Trust Scheme and Trust Scheme Provider

- **Trust Scheme Provider**
 - signed trust list indicating issuer operates under the specific Trust Scheme (using existing standards on Trust Service Status Lists ETSI TS 119 612)
 - Tuple-based representation of Trust Scheme

[Diagram of Conceptual Framework for Trust Scheme of TSPA]

...
Publication of Trust Schemes

<table>
<thead>
<tr>
<th>Type of Trust Scheme Publication</th>
<th>Example</th>
<th>Verifiable Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean</td>
<td>ETSI_EN_319_401</td>
<td>Compliance of an entity to a trust scheme</td>
</tr>
<tr>
<td>Ordinal</td>
<td>LoA4.ISO29115</td>
<td>Compliance of an entity to an ordinal value of a trust scheme</td>
</tr>
<tr>
<td>Tuple-Based</td>
<td>{(authentication:2Factor), (identityProofing:inPerson)}</td>
<td>Requirements of a trust scheme</td>
</tr>
</tbody>
</table>
Tuple-Based Trust Scheme Representation

- Bottom-up modelling approach
 - Consolidation of existing trust schemes
 - Conceptualization of data model
 - Development of data model
 - Tuples (attribute_name, attribute_value)
- Modelling of Tuple-Based Trust Schemes

<table>
<thead>
<tr>
<th>Input Scheme 1</th>
<th>Input Scheme 2</th>
<th>Consolidation Result</th>
<th>Saturation ΔS (min ΔS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO/IEC 29115</td>
<td>PCTF</td>
<td>Data Model v0.2</td>
<td>n.a.</td>
</tr>
<tr>
<td>Data Model v0.2</td>
<td>FIDO</td>
<td>Data Model v0.4</td>
<td>3</td>
</tr>
<tr>
<td>Data Model v0.4</td>
<td>QAA/AQAA, eIDAS</td>
<td>Data Model v0.6</td>
<td>9</td>
</tr>
<tr>
<td>Data Model v0.6</td>
<td>Chinese eSig Law</td>
<td>Data Model v0.6 (Data model of D3.1)</td>
<td>0</td>
</tr>
<tr>
<td>Data Model v0.6</td>
<td>Turkey eSig Law</td>
<td>Data Model v0.8</td>
<td>1</td>
</tr>
<tr>
<td>Data Model v0.8</td>
<td>MTF</td>
<td>Data Model</td>
<td>1</td>
</tr>
<tr>
<td>Data Model</td>
<td>Trust Scheme of Azerbaijan</td>
<td>Data Model</td>
<td>0</td>
</tr>
<tr>
<td>Data Model</td>
<td>UICC</td>
<td>Data Model</td>
<td>0</td>
</tr>
</tbody>
</table>

Wagner S. et al., 2019
Tuple-Based Trust Scheme Representation & Publication

- Data model
 - 27 concepts for Identity
 - 62 concepts for Credential
 - 9 concepts for Attributes
- 2 new constructs:
 - Authority Chain
 - Identity Provider
Tuple-Based Trust Scheme Representation&Publication

- Modelling of Tuple-Based Trust Schemes
 - Publication of Tuples of the generic Unified Data Model, e.g.
    ```xml
    <CredentialBindingUsingDigitalSignatures> true </CredentialBindingUsingDigitalSignatures>
    ```
 - Publication of Tuples-Based Trust Schemes
 - as part of the signed trust list
 - extra document with pointer from the trust list, e.g. `<AdditionalServiceInformation>`
DNS-based Trust Scheme Publication and Discovery

- Communication between components (DNS Name Server AND Trust Scheme Provider) for
 - Publishing Data using the TSPA: create, modify and delete Trust Schemes
 - Retrieving Data from the TSPA: querying process
Discovery of Trust Scheme Publication Authorities

- Example eIDAS Austria (with A-Trust as qualified trust service provider)

 - DNS query to discover trust scheme

 ;; QUESTION SECTION:
 _scheme._trust.a-trust.net. IN PTR

 ;; ANSWER SECTION:
 _scheme._trust.a-trust.net. IN PTR _scheme._trust.nrca-ds.at

 - DNS query to discover trust list

 ;; QUESTION SECTION:
 ;_scheme._trust.nrca-ds.at. IN URI

 ;; ANSWER SECTION:
 _scheme._trust.nrca-ds.at. IN URI https://www.nrca-ds.at/st/TSL-XML.xml
Discovery of Trust Scheme Publication Authorities

- Example eIDAS Austria (with D-Trust as qualified trust service provider) if
 - DNS query to discover certificate constraints

 ;; QUESTION SECTION:
 ;_scheme._trust.nrca-ds.at. IN SMIMEA
 ;; ANSWER SECTION:
 _scheme._trust.nrca-ds.at. IN SMIMEA <SMIMEA record data>

- <SMIMEA record data> example

 3 ; certificate usage domain issued cert
 0 ; selector: full certificate
 1 ; matching type SHA-256
c70cd54924d4c9cf ; certificate association data
 6ed20dc93c76aabb ...

Defined in RFC6698 & RFC7218
Trust Translation Authority (TTA)

- Open Source Client Library and Server Tools (available on IAK Git) that aim to design
 - A conceptual framework to represent arbitrary trust translation schemes.
 - Trust translation schemes to be published/queried over DNS
 - The discovery of Trust Translation Authorities.
- Legal Toolbox, publicly available soon (M36 of the project),
 - Cross-Border Legal Compliance and Validity of these trust translations publishing
TTA subcomponents
Discovery of Trust Translation Authorities

- how users (ATV) query TTA
 - find Trust Translations Lists
 1. QUESTION SECTION: Client/ATV to the TTA
 _translate._trust.loa4.eid.iso29115.org. IN URI
 _translate._trust.loa4.eid.iso29115.org. IN URI https://lightest.eu/ttl_LoA4iso29115_1.tpl

 - check validity of information
 1. QUESTION SECTION: Verifying authenticity
 _translate._trust.etimestamp.eidas.eu. IN SMIMEA
 _translate._trust.etimestamp.eidas.eu. IN SMIMEA <SMIMEA record data>

- Details:
 - ATM DNS Name Server w/DNSSEC Trust Translation Provider
 - Issue(DNSQuery=SchemeName)
 - LookupRR(SchemeName):...CertificateConstraints)
 - VerifySignature(Signature_TrustList,CertificateConstraints):Boolean

© LIGHTest Consortium
Trust Translation Scheme Representation

- Translations in TPL and XML formats
- A ternary list of (trustPolicy, sourceSchema, targetSchema).

\[
\begin{align*}
\text{translate_identity}(\text{EIDAS}, \text{FIDOUAF}_1, 5) :&= \\
&\quad \text{extract}(\text{EIDAS, schemename}, \text{eidas}), \\
&\quad \text{extract}(\text{FIDOUAF}_1, 5, \text{schemename}, \text{fidouaf}_1, 5), \\
&\quad \text{translate_qual}(\text{EIDAS, FIDOUAF}_1, 5).
\end{align*}
\]

\[
\begin{align*}
\text{translate_qual}(\text{EIDAS, FIDOUAF}_1, 5) :&= \\
&\quad \text{extract}(\text{EIDAS, eIdentity_level, qualified}), \\
&\quad \text{extract}(\text{FIDOUAF}_1, 5, \text{userVerification}, \text{"Fingerprint"}), \\
&\quad \text{extract}(\text{FIDOUAF}_1, 5, \text{userVerificationUp}, \text{"5"}).
\end{align*}
\]
Discovery of Trust Translation Lists

- Example: eIDAS eTimestamp
 - DNS query to discover trust translation lists
 - QUESTION SECTION: Client/ATV to the TTA
 ; _translate._trust.etimestamp.eidas.eu. IN URI
 - ANSWER SECTION: from the TTA
 - https://lightest.eu/ttl_qualifiedTimestampEidas1.tpl
 - https://lightest.eu/ttl_qualifiedTimestampEidasN.tpl
 - https://lightest.eu/ttl_qualifiedTimestampEidas1.xml
 - https://lightest.eu/ttl_qualifiedTimestampEidasN.xml
Verification of the Signed Translation Lists

Example eIDAS eTimestamp

- DNS query to discover certificate constraints

 ;; QUESTION SECTION:
 ;._translate._trust.etimestamp.eidas.eu IN SMIMEA
 ;; ANSWER SECTION:
 ;._translate._trust.etimestamp.eidas.eu IN SMIMEA <SMIMEA record data>

- <SMIMEA record data> example

 3 ; certificate usage domain issued cert
 0 ; selector: full certificate
 1 ; matching type SHA-256
 c70cd54924d4c9cf ; certificate association data
 6ed20dc93c76aabb …

Note: Defined in RFC6698 & RFC7218
Delegation Provider

- **Open Source Client Library and Server Tools** (available on IAK Git) that aim to design
 - A conceptual framework to represent delegations
 - Delegations to be published/queried
 - The discovery of Trust Translation Authorities.
- **Legal Toolbox**, publicly available soon (M36 of the project),
 - Cross-Border Legal Compliance and Validity of this delegations publishing
Design of a Conceptual Framework for Delegations

- Views on different projects and scientific publications
- Defines possible types of delegations (bilateral, substitution, delegation type)
- Data format defined
- Revocation of a delegation
 - Revocation with OCSP
 - Delegation Provider gets a delegation to sign the OCSP response
Design of Publication of Delegations

- Mandator
 - Creates delegation
 - Signs the delegation
 - Creates encryption key for the delegation
 - Encrypts generated key with Proxy’s public key
 - Uploads delegation and encryption key to delegation provider
Discovery of Delegations

- **Proxy**
 - Requests delegations
 - Provides public key

- **Delegation Provider**
 - Generates challenge
 - Sends challenge to proxy

- **Proxy**
 - Solves challenge
 - Sends result back

- **Delegation Provider**
 - Sends delegations to Proxy
How to Integrate and Test Components

- Sources can be obtained via IAIK GitLab at https://extgit.iaik.tugraz.at/LIGHTest/
- Each component uses/provides a REST API
 - TSPA to handle Trust Schemes that
 - Passes the information to the DNS server to create/update/delete entries
 - Stores the Trust Scheme information
 - TTA to handle Trust Translation Schemes that
 - Passes the information to the DNS server to create/update/delete entries
 - Stores the Trust Translation Scheme and Agreement information
 - DP
 - To create/update/delete entries
 - Stores delegation data
Integration and Conformance Testing of components in LIGHT*est

- Main objective
 - Render all LIGHT*est components mature and robust in order to reach TRL7.
 - Performs evaluations whether the products are in compliance with the defined specifications
- Iterative approach
 - 3 iterations are held
- Automated testing using Minder
How to Integrate and Test Components

- **Minder** Conformance and Interoperability Testbed is used for the testing architecture
- Implemented in e-SENS EU Project
- Ability to create-group-edit-execute test stories (or more formally test assertions converted to test cases) and inspect and publish reports and logs
- Minder Test Definition Language (MTDL, an extensible SCALA-based scripting language) including the use of external Java library dependencies
How to Integrate and Test Components

- **Minder** is compliant with GITB (Global e-Business Interoperability Test Bed methodologies).
- Focuses on methodologies and architectures that support e-business standards assessment and testing activities from early stages of business standards development from:
 - Implementation and
 - Implementation → deployment of large-scale solutions.
Integration and Conformance Testing of components in LIGHTest

- Automate
- Testing Methodology is based on OASIS Test Assertion Model
Minder Testbed Applied Architecture

- The architecture & scenarios based on the design documentation is base on
 - Querying of Trust Scheme Membership
 - Querying of Trust Translation List
 - Discovering of Trust Delegation
 - Publishing of Trust Delegation Test Scenario

- **Minder Test Manager** is implemented to handle test case and suite execution
Conformance and Interoperability Testing Iterations

- TSPA
 - 18 Normative Statements:
 - 11 Test Assertions derived from normative statements
 - 20 Test Cases derived from assertions

- TTA
 - 15 Normative Statements
 - 15 Test Assertions
 - 25 Test cases

- DP
 - 13 Normative Statements
 - 15 Test Assertions
 - 18 Test cases
Conformance and Interoperability Testing in Summary

- Technical Infrastructure Setup – DNS with DNSSEC setup for the components
- Deployment and Integrating of LIGHTest components for testing
- Test Assertions and Test Cases extraction from:
 - Use cases = Integration Test
 - Requirements = Conformance and Interoperability Tests
- Test Executions and Report Generations
- Defect correction and Re-Execution of Tests automatically with minimum effort